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INSTABILITY OF A STEADY-STATE REGIME FOR THE COMBUSTION 

OF PETROLEUM IN A POROUS MEDIUM 

S. P. Fedotov and N. A. Mikhailova UDC 536.46 

A system of equations for multiphase nonisothermal filtration is used to ex- 
amine the problem of dynamic instability, as well as the self-excited oscilla- 
tions of a plane fuel-combustion front in a porous medium. 

In a number of experiments designed to model the process of combustion within a combus- 
tion front, we observe variations in the velocity at which the petroleum-combustion front 
moves [1-3]. The existence of oscillatory instability exhibited by the plane front of 
steady combustion and the self-excited regular oscillations generated in this way are long 
since familiar from examples of the combustion of powders and nongaseous systems [4, 5], and 
from filtration combustion of metals [6]; however, unlike these last examples, no theory has 
yet been constructed for the instability and self-induced oscillations of a fuel-combustion 
front in a porous medium. Analytical results in this area have been obtained within the 
framework of a steady-state postulation of the problem [7, 8]; the nonsteady effects have 
been investigated primarily with numerical methods [9, i0]. 

In the general case, the theoretical investigation of the process of combustion within 
a combustion front must be based on a system of differential equations for multiphase non- 
isothermal filtration, which includes the continuity equations for petroleum as well as 
for a multicomponent fuel that undergoes changes as a consequence of oxidation, distilla- 
tion, cracking, etc., both for water and steam, for an inert gas and an oxidizer pumped into 
the fuel, for gaseous reaction products, as well as an equation for the temperature and laws 
of filtration. The complexity of the mathematical analysis of such a system of nonlinear 
equations is obvious and, therefore, use is normally made of a series of simplifying assump- 
tions (see, for example, the review in [i]). 

Statement of the Problem. It is assumed in this paper that the petroleum is an incom- 
pressible liquid made up of only a single component and that it enters into the oxidation 
process in accordance with the reaction H + viO2 + 93H, where H denotes the gaseous reaction 
products. It is assumed that these last exhibit the same thermophysical properties as an 
oxidizer and an inert gas. We examine the "dry" combustion of the petroleum, achieved sole- 
ly by forcing air into the interstitial space. 

A. M. Gor'kii Ural State University, Sverdlovsk. Translated from Inzhenerno-Fiziches- 
kii Zhurnal, Vol. 55, No. 5, pp. 767-775, November, 1988. Original article submitted 
May 12, 1987. 
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Within the framework of a monotemperature model and in quasihomogeneous approximation 
in a coordinate system moving at the speed of the combustion front, the system of equations 
for the filtration combustion of petroleum in a porous medium can be written in the follow- 
ing form [8, 9]: 

5 o 
(msog) @ c~, (t) (tnsgg) -~- ~ (9gvg) = 9o W (s, a, T), p = RpgTm -1, 

Ot 

0 (msapg) + (P'(t) 0 0 Ot ~ (rrtsapg) + -~x (aggVg) = - -  [~P~ (s, a, T), 

o 
(m (1 - -  s) 90) ~ '  q~' (t) (m (1 - -  s) 9o) + -~x (9oVo) = - -  poW (s, a, T), 

Ot ' ox 
(I) 

C O T  ~ + (ggcgVg + pocoVo) OT = L OzT 
Ot + C,I~' (t) ox 0---~ Ox s 

C = (1 - -  m) 9rC~ + m ( 1 - -  s) poCo + mspgcg, Vo -- 

Vg = kkg (s) Op 

+ QpoW (s, a, T), 

kko (s) Op 
~'o (T) ox 

In writing the equations for the temperature we assume that the specific heat capaci- 
ties for the petroleum and the gas coincide. For the reaction considered in this paper the 
equation c o = Cg is rigorously satisfied if the thermal effect of the reaction Q is indepen- 
dent of T. 

Analysis of system (i) is significantly simplied when the velocity of the gas is sub- 
stantially greater than the velocity of the front (Vg >> ~'(t)). In this case, the charac- 
teristic time of establishing the steady distributiofi of the pressure field Xp (or of the 
density field) is considerably less than the relaxation time ~T for the temperature field. 
Indeed, let the spatial scale of the problem be L ~ m/U, where < is the thermal conductivity 
of the medium and U is the steady velocity of the combustion front. It is obvious that 
~T ~ L2/~, for XT ~ L/U, while Xp ~ L2/K, where K is the coefficient of piezoconductivity, 
or ~p ~ L/Vg, so that consequently the inequality Tp << XT corresponds to the inequality 
U << Vg. Assuming this latter condition to be satisfied, we further assume that the relative 
deviations in the rate of petroleum filtration and saturation from steady values, resulting 
from the fluctuations in temperature, are considerably smaller than the relative perturba- 
tions in the velocity of the combustion front. This last condition is always valid in the 
kinetic regime, when the relationship between the rate of the reaction and the temperature 
is considerably stronger than an analogous relationship for the viscosity of the petroleum. 
Thus, we will assume that p~ and s are explicitly independent of time. It is obvious that 
in this case the problem of-analyzing system (i) is significantly simplified, since it is 
necessary to consider only the nonsteady nature of the temperature field, regarding the fil- 
tration motion in this case as steady. 

Within the scope of the assumptions made so far, the first three equations of system 
(I) can be rewritten in simpler form by 

OX (pgVg) = ooW, ~ (apgVg) = - -  ~poW, (0 '  (t) m (1 - -  s) 4- Vo)'= - -  W. ( 2 )  

Limiting ourselves to the accompanying forced filtration, where the gas flow G, behind 
the combustion front is given, as is the oxidizer concentration a,, we can write the first 
integrals of system (2): 

pgVg -6 9o @'  (0 m (1 - -  s) + Vo) = - -  G,, apgVg -~- ~ (pgVg @ G,)  = - -  a ,  G, .  ( 3 ) 

Using the first integral in (3) and the inequality pg << Po, let us transform the equa- 
tion of heat balance in system (i): 

_ ~  OF ~ 02T (4) 
[ ( l - - m ) p r c ~ + m ( 1 - - S ) 9 o C o ]  @ [ ( 1 - - m ) p ~ c ~ ' ( t ) - - C o G , ] ~ - -  = +Qgo  W. 

o x  Ox z 
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In the assumption of a strong relationship between the rate of chemical reaction and 
the temperature, we approximate W with the 6-function 

W (s, a, T) = A (T) 6 (x), A (T) ,-, exp ( - -  E/2RT), (5)  

where A(T) is determined from an analysis of the structure of the combustion zone. 

Thus, in this problem the zone of chemical reaction is treated as a discontinuity sur- 
face at which the temperature is continuous, while the saturation of the gas and of the 
petroleum flow experiences discontinuity, as do the gas and the oxidizer, and also the heat 
flow. Limiting ourselves to an examination of the kinetic combustion regime [6], we assume 
that we have complete combustion of the petroleum behind the front �9 > 0, s = i), in which 
case we have the oxidizer on both sides of the front. The second term in (3) imposes a 
limitation on the condition for the realization of such a regime in the form 

a2G, > ~Po (r (t) m (1 - -  s) + Vo) (a~ --- a.,  a~ > 0). ( 6 ) 

Here and below, the subscript i denotes the quantities where x < 0, while the subscript 2 
is used for x > 0. 

Having integrated (4) and the last equation in (2), with consideration of the presenta- 
tion in (5), as well as of the condition of continuity for the temperature field, we derive�9 
the expressions for the jump in the heat flow in the reaction zone where x = 0, and for the 
mass rate of petroleum combustion we will have 

aT1 ~ OT~ = QpoA (T (0, t)), 
ax Ox 

To close Eq. 
the nonsteady velocity r of combustion-front motion as a function of temperature. 
this we will use relationship (8) and the inequalities 

dT >> " r  > > - -  " -  dT 

where E is the activation energy for chemical reaction. 
conditions is written in the form 

(7 )  

po(~ ' ( t )m(1- -S l )+Vo)  = 9oA.(T(O, t)). (8 )  

(4) with a source in the form of (5), we have to find an expression for 
For 

(9 )  
~; dT, ' ]  

Relationship (8 )  under stead;-state 

Po (Urn (1 - -  s ~ -t- V ~ = poA (Tf). ( 10 ) 

Having found the difference between (8) and (I0), and having given the function A(T) in the 
form 

A (T) = A (Tf) exp ~ (T - -  Tf 

( i l )  

with consideration of inequalities (9), we find an expression for the velocity r (t): 

E - -  )] - - 1  
�9 ' ( t )=v-~ m(1 - s~(O)) . 

After substitution of (ii) into Eq. (4), we can reduce the examination of the nonsteady 
filtration of petroleum combustion in a porous medium to an analysis of the two equations 
for the temperatures T I ahead of the front (x < 0) and T= behind the front (x > 0), as well 
as for the condition x = 0 at the discontinuity, and for infinity: 

( 1 2 )  

Ci O_~_~/._S,[(l_m)p~c~U+c~G,]_~x~ + (1--m)p~c~A(Tf) x 
~ m ( 1  - -  s o ( 0 ) )  

•  (T(0, t ) - - T f ) ] - - l ) O T ,  =3, O~Ti �9 
Ox Ox 2 ' 

i = 1, 2; C1 =(1 - -  m) prc~ + m(1 - -  s ~ poco = ~eonst, C2 = (1 - -  m) ,o~c~, 

Tx(0, t ) =  T~(0, t), T I ( - - o o ,  t ) =  T~0, T~(oo, t ) <  co, 
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_ [ E (7"(0, t)--Tf) l OT~ox (0, t) - -  Z, OT~ox (0, t) = OpoA (Tf,) exp 
(12) 

Using the following quantities as dimensionless variables and parameters 

O~ T~ -- T,o 
Tf - -  T~ o 

t(1 --m)p,c~AZ(Tf ) x(1 --m)prc~A(Tf) 
Zm z(l-s ~ , z-- L(l--s ~ 

m (1 -- s?)poC o 
o~ = 2RTf 1--  r f  ] '  (1--rn)prc r ' 

m ( I -  s o (0))[(1 - m) o~c~U - c f i , l  
= - (1 -- m) prcrA (Tf) 

we can write system (12) in the following form: 

W + W + g=Oz  

00__ ! ~_ ~ OO2 ~_ [e=(O,(O,x)-O 1] 
at dz 

- - - -  (-- oo <z<0) ,  

(13) 

O0~ _ 0%. (O < z < oo), 
01 Oz 2 (14)  

OO~ ~e CZ(01 (o, ~)--I), O%(o,~)_ - (o , t )=  0~ (0, ~) = 0~ (0, ~), ~ 

Ol(--  oo, " 0 = 0 ,  0 . , (~ ,  , ~ )<  o,o. 

In writing the boundary condition for the temperature-gradient jump we employ the equa- 
tion which links the temperature Tf at the front to the temperature Tl0 at an infinite dis- 
tance from the front: 

Tf = T~o --I- Qpo A (Tf)l(l - -  m) p,,c~U,-- cgG,I-L 

The steady-state solution of problem (14) is given by 

O?(z)=e ~, O~(z)= 1. (15) 

Linear Analysis ~  Stability. The nonsteady solutions of system (14) will be sought 
in the form of the sum of the steady-state solution and the small perturbations: 

01 (Z, ~) = O? (Z) + U 1 (Z; ~), 02 (Z, ~) =-- O~ (Z) + "2 (Z, ~). ( 1 6 )  

After having substituted (16) into (14), and with subsequent linearization for the small 
quantities u I and u2, we obtain the equations 

Ou~ Ou~ 007 Ohq Ou~ Ou2 O~u2 
( l + 6 ) ~ q - p ~ + ~ u l ( O , ~ )  Oz - xz ~ '  O ~  + ~  O~  Oz 2 (17)  

and the boundary conditions 

u~ (0, ~:) = u~ (0, 
% Oul O,q 

-O-;-z (0, ~) - -  - -  (0, "0 = ~P"~ (0, ~), Oz (18)  

u. ( - -oo,  ~) = O, u2 (oo, "0 < oo. 

The solution of the linear problem (17)-(18) can be written in the form 

[ [ J I 
u ~ = A e ~ e x p  (~ - -  ~ 2  ~_ i 4 m ) ~ -  , 

where  a = iw s a t i s f i e s  t h e  d i s p e r s i o n  r e l a t i o n s h i p  

(19) 
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Fig. i Fig. 2 

Fig. i. Curves showing the neutral stability (Re~ = O) in 
the parametric plane =,, 6 for various values of the parame- 
ter 6. 

Fig. 2. Dimensionless frequency w e = Im ~ (Re ~ = 0) as a 
function of 6 for various values of the parameter 6. 

( l + 8 ) f l ( V p 2 + 4 ( l + f ) f l  + V ~ + 4 ~  --2a~)  + a ~ ( V ~ + 4 ( l + f ) e  - 8 ) = 0 .  (20)  

We see from solution (19) that the steady-state solution (15) is stable if Re~ < 0. 
In Fig. i, for the parametric region =,, 8 we see the curves of neutral stability (Re~ = 0), 
obtained through numerical analysis of the dispersion relationship (20). These curves cor- 
respond to various values of the parameter 6, which characterizes the difference in heat 
capacity of the medium in front of and behind the combustion front. The dashed line shows 
the region of stability. We see that as the parameter 6 increases, the region of instabil- 
ity expands. It becomes clear from Fig. 2 that with a reduction in the parameter 6 the fre- 
quency we increases (~, = IMP). 

When the heat capacities of the medium on the two sides of the front coincide (6 = 0), 
the dispersion relationship assumes the simple form 

4fl 2 + (~ + 4a -- a2~) ~ + a~ (~ + a _ a~) = O. (21) 

Equation (21) has two roots  

fl,~ = __ ~ (~ + 4~ - -  ~z~) ~ ~ ~ (_~__+ 4a - -  ~ ) ~  - -  16~ (~ q- a - -  a~). (22) 
�9 8 - -  8 

Let the expression in (22) under the radical sign be less than zero, in which case the 
instability condition (Re~ > 0) is written in the form 6 + 4= - =26 > 0, while the neutral- 
stability curve 6 = 4a( =2 - i) -l corresponds to the values of =, = 2/6 + Jl + 4/6. When 6 = 
i, we obtain the results =, = 2 + ~, corresponding to the combustion of nongaseous systems 

[5]. 
The region of parameters for which 6 > 4a( ~2 - 1) 'I and 6 < 8~(i + a)-2 corresponds to 

the oscillatory nature of stability loss. We see from relationship (22) that on the neutral- 
stability curve the oscillation frequency is defined in the following manner: w e = (6/2). 

/~,(6 + a, - =,6). By means of (13) we can determine the period of temperature oscillation: 

T = 2~m z (I - -  s? (0)) (23) 
~ ,  (1 - -  m) prc,  ( t o o  - -  s? (0)) V - 1V ~ 1) 

Calculations with formula (23) yield good qualitative agreement with experimental re- 
sults obtained on laboratory models simulating the actual conditions [3]. Thus, for example, 
with U = 0.36 m/h, iV~ = 0.01U, l/PrCr = 10 -3 m2/h, ~, = 5, 6 = 0.83, ~, = 1.2, m = 0.8, 
sx ~ = 0.72, we obtain the oscillation period T " 40 min [3]. 

In order to answer the question of how the gas filtration affects the stability of the 
process, with consideration of (9) let us transform the expression for the parameter 6 in 
(13) as follows: 

= 1 - - c ~ G ,  [(1 - - m ) p , . c r U ]  -1 (24)  
1 --{V~ [m(1 - - s ~ )  UI- '  
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Fig. 3. Parameter m2 as a function of ~ for various values 
of the parameter 6. 

Fig. 4. Parameter ~= as a function of ~ (curves i), and the 
coefficient -Ks(0) as a function of $ with a rightward shift 
of 0.6 along the abscissa (curves 2). 

As we can see from Fig. i, an increase in the parameter ~ may lead to the destabiliza- 
tion of the steady-state combustion regime. It is clear from (24) that despite the fact 
that the gas and petroleum flows were moving in the same direction, the motion of the petro- 
leum, unlike that of the accompanying gas flow, is a destabilizing factor. 

Self-Induced Oscillations. It is obvious that the experimentally observed oscillations 
in the velocity of the petroleum combustion-front motion are a manifestation of a self-excited 
oscillatory regime whose characteristics can be determined through an analysis of the nonlin- 
ear system of equations and boundary conditions found in (14). In the general case, such a 
study can be carried out only with numerical methods; however, near the instability thres- 
hold, when 0 < ~ - a, << i, the methods from the theory of perturbations [ii, 12] make it 
possible analytically to construct a periodic solution of Eqs. (14). Let us note that the 
successful study of the self-excited oscillatory and spin combustion regimes for nongaseous 
systems and of systems with diffusion by the methods of perturbations was performed in [13- 
16]. 

We will present the solution of system (14) in the form of the sums 

01 (z, ~ = exp (~z) q- vx (z, ~), 0= (z, x) = 1 § v= (z, ~). (25) 

We should expect that near the threshold of self-excited oscillations (~ = ~,, ~ = ~,), 
the terms vz(z , x) and v2(z , x) differ little from the solutions for the linear equations 
(17)-(18). The frequency of the self-excited oscillations will also differ little from the 
quantity m, derived within the framework of the linearized problem at the boundary of neu- 
tral stability. Having introduced the frequency m, for the self-excited oscillations into 
Eq. (14) by means of the transformation x' = ~x and having substituted sums (25) into (14), 
we obtain the following nonlinear equations for v I and v2: 

Ov~ 3v~ I 
o Or' + ~ Oz @[exp(avl(O, ~ ' ) ) - -1] \ (  OVioz + ( 2 - / ) ~ e x p ( ~ z )  ---- Oz----7--, o~v~" i = l ,  2. (26) 

The boundary conditions have the form 

v~ ( - -oo ,  ~') = O, 

av~ (0, "~') 
Oz 

v~ (oo, ~') ~ oo, v~ (0, T') = v,_, (0, "c% 

0v2 (0, "~')= [5(exp(czvl(0, z ' ) ) - -  1). 
0z 

(27) 

The solution of system (26)-(27) periodically with respect to time, frequency ~ of 
the self-excited oscillations, and the bifurcated parameter = will be sought in the form 
of an exponential expansion of the small parameter e [13-16]. Dropping all of the calcu- 
lations, which should form the subject matter of a separate paper, we will cite only the 
final results: 

2A (28) 

+ ~2[K3i_2(z)cos2z'@ K3i_l(z)sin2z'+ K3i(z)l + 0(~); 

i =  1, 2; ~ = m , @ o ~  2@0(~2), ~=a ,q -a2s2q -O(~2) .  

1249 



The functions u z and u 2 have been determined from (19). The specific form of the func- 
tion Kz(z)-Ks(z) is omitted here. 

We see from Fig. 3 that with a reduction in 8 the nonlinear correction for the frequen- 
cy is increased. The value of =2 is always positive, which indicates soft self-excitation 
of the oscillations. 

The chief significance of the theory is the answer to the question of how the effects 
of nonlinearity and filtration impinge on the mean velocity of the nonstationary combustion 
front. According to (ii), the velocity @'(t) is determined from the formula 

~ '  (*') = U + A (Tr  [exp (~vl (0, *' 
m(1 - -  s~) ' ~)) 1]. 

Hence it follows that the average correction for U can be determined in the following man- 
ner: <@'(T') - U> = ~,e2K3(0)A(T f) [m(l - sz~ -I. As we can see from Fig. 4, the mean 
velocity in a nonstationary regime diminishes, which is in agreement with the results of 
[13], wherein for small ~ this reduction may be rather great. 

NOTATION 

p, density; V, velocity; m, porosity; s, saturation; a, oxidizer concentration; p, 
pressure; T, temperature; C, heat capacity of a volume unit; c, heat capacity of a unit of 
mass; ~ and v, stoichiometric coefficients; W, rate of the chemical reaction; Q, heat of the 
reaction; X, coefficient of thermal conductivity; R, gas constant; k, coefficient of per- 
meability; ~', viscosity; x, a spatial coordinate; z, dimensionless coordinate in (13); t, 
time; T, relaxation time and dimensionless time; U and @'(t), steady and nonsteady combustion 
fronts; G,, gas flow at infinity behind the front; a,, oxidizer concentration at infinity 
behind the front; L, characteristic scale; A(T), function in (5); E, activation energy; =, 
6, and 6, dimensionless parameters in (13); 8, dimensionless temperature in (14); ~ and ~, 
dimensionless frequencies; w 2, =2, and e, parameters in (28). The subscripts are as follows: 
g, gas; o, oil (petroleum); r, solid skeleton; *, parameters on the curve for neutral stabil- 
ity and in (3); #, the temperature of the front, under steady conditions; 10, temperature at 
an infinite distance ahead of the front; the superscripts are as follows: 0, steady-state 
value and *, complex conjugate. 
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ANALOGY BETWEEN TWO MATHEMATICAL MODELS IN THE THEORY 

OF TWO-PHASE FILTRATION 

A. A. Gil'man UDC 532.546 

It is demonstrated that the general model of nonequilibrium two-phase filtra- 
tion [i] describes the filtration of a two-phase fluid in the simplest model 
of a fissured and porous medium. 

i. In mathematical models a fissured-porous material is treated as a medium exhibiting 
dual porosity with each type, i.e., fissured and porous [2, 3], present in each "elementary" 
macrovolume of the medium. Each of these two distinct types of media (assuming that the 
other is replaced with a solid skeleton) exhibits a unique porosity and permeability. A fis- 
sured-porous medium is the limiting case in which the porosity of the fissures and the per- 
meability of the block tend toward zero. 

The combined filtration of two nonmixing incompressible liquids (water and petroleum) 
in such a medium are described by a system of continuity equations for each phase in the 
fissures and in the porous blocks as well as in the generalized Darcy's laws for rates of 
phase filtration in the fissures: 

MO~s+vul+q=O,  MO~(1--s)+vu2--q=O, 

k (1) 
mO~e--q:O, u ~ = - - - -  [,(s) vp (i---- 1, 2). 

Here s and o denote, respectively, the saturation with water of the fissures and the 
blocks; q is the volumetric density of the water flow from the fissures to the blocks (i.e., 
the volume of the water overflowing into a unit volume of the medium per unit time). The 
direct transfer of liquid to the blocks is not taken into consideration. The fourth con- 
tinuity equation (for the oil in the blocks) has actually already been accounted for in that 
the petroleum flow from the blocks to the fissures is assumed to be equal to the water flow- 
ing in the opposite direction. 

The closing relationship for system (i) must determine the magnitude of the return 
flows q between the media, which, generally speaking, is a function of the history of the 
process [i.e., s(t) and a(t)] at this point. Various simplifying assumptions relative to 
q were employed in [3-5] which made it possible to write out the closing relationship. 
It is proposed in [4] to treat q as a universal function (for the given properties of the 
medium) of the time that the block spends behind the front formed by the water. It was 
assumed in [5] that q is defined by the instantaneous saturations of the fissures and the 
blocks at a given point: q = q(s, ~). In the following we will deal only with this latter 
model. 

2. In a state of equilibrium between the blocks and the fissures we have q(s, o) = 0 
and a = ~ (s) (the function ~ is found from the condition of equality for the capillary pres- 
sures in the media). For minor deviations from equilibrium, we assume linearization (see 
Fig. i): 

q (So, ~):~" q (So, %) + Ooq I~o (~ - -  %) = --O~q J~o) (~ (So) - -  ~). 
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